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Abstract

The sound generation mechanisms during finite core vortex interactions at low Mach number are
investigated in the present study. The theoretical deductions show clearly that the basic sound generation
mechanisms are associated with the vortex core deformation and the vorticity centroid dynamics,
independent of the vortex system. Such deductions are substantiated by numerical experiments with the
interactions of two-dimensional vortices, vortex pairs and vortex rings. Detailed discussions on the
similarities and differences between the sound generation processes of the two-dimensional and
axisymmetric vortex systems are given. The relative importance of the two sound generation mechanisms
in these vortex systems, their characteristics and interactions, which are hardly found in existing literature,
are also examined. The present findings have also generalized and substantiated the previous results of the
authors on the topic.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The turbulence generated by shear flows is sound producing. Since Lighthill [1] proposed the
aeroacoustic model using the stress tensor as the source, many models of turbulence sound
generation have been developed. Typical examples include the vortex sound theory of Powell [2],
the instability wave model of Ffowcs Williams and Kempton [3] and the stagnation enthalpy of
Doak [4].
The topic has also been studied through direct numerical simulation. The results of Colonius

et al. [5] and Mitchell et al. [6] pointed out that the conventional acoustical analogy gives rise to
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source terms that may not have direct contribution to the overall sound field produced by a shear
layer. Their results show some features of the experimentally measured sound field. The source
terms they specified are related to the local fluid velocities and their gradients. Freund [7], in a
recent direct numerical simulation study, computed the Lighthill’s source using Fourier methods
for a low-Reynolds-number transonic turbulent jet and demonstrated that the results so obtained
agreed to a great extent with the experiment.
The vortices have attracted the attention of many researchers, due to their simplicity and the

inherited difficulties in handling turbulence. K .uchemann [8] has concluded the importance of
vortices in the study of turbulent shear flows. The theory of vortex sound shows explicitly the
importance of unsteady vortex motion on the production of sound [3]. Knio et al. [9] investigated
the sound produced by the interactions between two-dimensional vortices using basically acoustic
analogy with M .ohring’s source term [10]. They suggested the importance of vortex core motions
and vortex core perturbations on the production of sound. M .ohring [11] has also discussed the
importance of vortex ring centroidal motions on sound generation. However, the relative
importance of various sound generation mechanisms, their interactions and characteristics in the
interacting finite core vortex systems are not explicitly addressed. Howe [12] and also M .ohring
[11] investigated the sound produced by unsteady two-dimensional elliptic core vortex motions,
but they dealt with time-invariant core shapes, which may be a drastic simplification for finite
core vortex interactions in which the cores are not elliptical and their shapes are functions of
time [13].
The numerical results of Leung et al. [14] show that the pairing of two thin inviscid vortex rings

can produce a sound field having the essential characteristics of jet noise. The results of the
numerical studies of the authors [13,15,16], using the method of contour dynamics, have
illustrated the importance of vortex acceleration and jerk in the production of sound by the
interactions of two finite core vortices. These findings appear consistent with the experimental
results of Tang and Ko [17], which, to the authors’ knowledge, reported the first direct
comparison between theory and experiment in the study of sound generation by unsteady motions
of the vortical structures in an air jet.
More recent numerical results of the authors on the low-Mach-number sound generation by the

interaction of two vortex pairs [18] suggest that the sound source term can be separated into two
components: one component is related to the vortex centroid dynamics and the other to the
microscopic vortex core deformation. Their results also suggest a possible generalization of sound
sources in the interactions between two inviscid finite core vortices at low Mach number. This
recent work [18] discussed the characteristics of various sources and has provided a physical
interpretation of the sound generation process involving coherent structures inside turbulent shear
flows. Though the vortex centroid dynamics and the vortex core deformation may not be easily
measured experimentally, they can be studied using the direct numerical simulation method. A
carefully designed conditional sampling experiment [19] can help their recovery.
This paper is an attempt to extend the work of Tang and Ko [18] to different vortex interaction

systems, such that the basic sound generation mechanisms can be established. Sound production
by the leapfrogging motions, coalescence and collisions between two vortex rings, two vortex pairs
and two two-dimensional vortices (without collision) will be studied and presented. It is also
aimed at examining the similarities and differences in the mechanisms of sound generation in the
two-dimensional and axisymmetric vortex systems. The importance of and the interactions
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between different sound generation mechanisms in the overall sound generation processes will be
discussed.

2. Theoretical considerations

2.1. Method of contour dynamics

This method was first developed by Zabusky et al. [20] for the calculations of non-linear vortex
patch evolution. Each vortex core boundary is treated as a contour. The velocity of each element
on these boundaries is calculated by using the Biot–Savart induction law in the presence of
vorticity. One can observe that the fluid velocity, u; at a point, y; in the flow field (near field) is
related to the local streamfunction c as

u ¼ r� ðcf ðyÞÞ; ð1Þ

where f ðyÞ is a vector function depending on the vortex system. The vorticity transport equation
for an incompressible flow suggests

D

Dt
ojf ðyÞjð Þ ¼ 0; ð2Þ

where t is the interaction time and o the vorticity at the point y: Eqs. (1) and (2) can be solved
once the system Green function are known [20,21]. The calculation of u involves an integration
over the cross-sections of the vortex cores, which can be transformed into a contour integral using
the Stoke’s theorem. Full details on the application of this method in the two-dimensional and
axisymmetrical vortex systems can be found, for example in Zabusky et al. [20] and Pozrikidis
[21], respectively, and are not repeated in the present paper. Some simplified version of the theory
can also be found in the previous works of the authors [16].
In order to ensure smooth vortex boundaries and efficient computations throughout the

numerical experiment, the node point insertion and relaxation procedure employed by Pozrikidis
and Higdon [22] were adopted. All the contour integrals involved were computed using the four-
point Gaussian quadrature procedure. The vortex core shapes were obtained by integrating the
core boundary velocities with respect to time, using the fourth order Runge–Kutta method.

2.2. Vortex sound generation mechanisms

According to theory of Howe [12], the acoustic variable in the full equation for aeroacoustics is
the stagnation enthalpy. The sources are related to vortex motions and flow entropy. However, in
the low-Mach-number inviscid condition, his theory reduces to that of Powell [2]. The farfield
pressure fluctuations, p; generated by the low-Mach-number unsteady motions of vorticity-
bearing fluids can be obtained by solving the following inhomogeneous equation:

1

c2
q2p
qt2

�r2p ¼ r0r � ðo� uÞ; ð3Þ

where c and r0 are the speed of sound in and the density of the ambient fluid respectively. The
general solution of Eq. (3) for p at a farfield displacement x depends on the type of vortex system
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concerned. In the present study, it is assumed that the farfield distance jxj is much greater than any
length scale in the vortex system cross-section. The theory of M .ohring [10,11] is used in the
present study. However, Crow [23] has pointed out that acoustic analogy is asymptotically
incorrect for any flow where the total vortical region is substantially larger than any particular
eddy in the flow, that is, when the flow/acoustic interactions become important. The present use of
the acoustic analogy is therefore restricted to those cases when flow/acoustic interactions may be
neglected.

2.2.1. Two-dimensional vortex system
Both the two-dimensional vortices [13] and the vortex pairs [18] belong to this category and

they produce non-compact flow fields. Their motions and the positions of their boundaries can be
described by using the longitudinal and transverse co-ordinates, denoted as y1 and y2; respectively
(Fig. 1). The spanwise direction y3 is important only in the evaluation of the final farfield pressure
fluctuations as the integral in Eq. (4) has to be taken over this length scale from �N to +N [13].
In this vortex system, f ðyÞ in Eq. (1) equals #y3:
Let A be the cross-sectional area of the vortex system which extends to infinite in the y3

direction, the farfield pressure fluctuation p can be expressed as, following the results of M .ohring
[11],

pðx; tÞ ¼
r0
8pc2

Z
N

�N

1

jx � yj
q3

qt3
cos 2y

I
oy1y2 dA þ sin 2y

I
y22 � y21

2
o dA

� �
dy3; ð4Þ

where the differentiation is taken at the retarded time t� jx � yj=c: There are two quadrupoles co-
existing. The integration over y3 is not performed in the present study as it has no bearing on the
sound generation mechanism. One should note that Eq. (4) is equivalent to the formula derived by
M .ohring [11]. Details on this equivalence are given in the appendix. A Fourier transform of
Eq. (4) with respect to t gives the formula used by Knio et al. [9] provided that jxj-N: Two
source terms are thus identified

S1 ¼
I

oy1y2 dA and S2 ¼
1

2

I
ðy22 � y21Þo dA: ð5Þ

Far Field Observer point x

y1

y2

y3

y

Two-dimensional vortex system
Origin

Fig. 1. Schematic diagram for two-dimensional vortex system.
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Since the steady motion of vorticity is not a source of sound, the effects of any mean motions in
these two source terms have to be eliminated so that the discussions will not be affected by these
mean terms, all of which are not contributing to the final sound field. To do this, one defines the
vorticity centroid of the whole vortex system ysc as

ysc ¼
I

oy dA=

I
o dA ¼ ysc1 #y1 þ ysc2 #y2: ð6Þ

Then, the position of a point inside the vortex core y0 relative to the mean motion can be written
as y0 ¼ y � ysc: Thus,

S1 ¼
I

oy1y2 dA ¼
I

oy01y
0
2 dA þ ysc1

I
oy0

2 dA þ ysc2

I
oy0

1 dA þ ysc1ysc2

I
o dA ð7aÞ

and

S2 ¼
1

2

I
oðy022 � y021 Þ dA þ ysc2

I
oy02 dA � ysc1

I
oy01 dA þ

y2sc2 � y2sc1

2

I
o dA: ð7bÞ

One can observe that the integral
H
oy0i dA (i ¼ 1; 2) either vanishes or is a constant, due to the

conservation of vortex impulse.
H
o dA is the total circulation and is again a constant. The source

strengths of the two quadrupoles are

q3S1

qt3
¼

q3

qt3

I
oy01y

0
2 dA þ

I
oy0

1 dA
q3ysc2

qt3
þ

I
oy02 dA

q3ysc1

qt3
þ
I

o dA
q3ysc1ysc2

qt3
ð8aÞ

and

q3S2

qt3
¼

q3

qt3

I
y02
2 � y02

1

2

� �
o dA þ

I
oy0

2 dA
q3ysc2

qt3
�

I
oy01 dA

q3ysc1

qt3

þ
I

o dA
q3

qt3
y2sc2 � y2sc1

2

� �
: ð8bÞ

The quantities involved in Eq. (8) are all Galilean invariants. Eq. (8) suggests the importance of
the system vorticity centroid unsteady motions and the system impulse in the production of
sound. However, not all of them are significant in symmetrical systems, such as the two-
dimensional vortices and vortex pairs. This will be discussed later.
Focusing on one of the interacting vortices and further defining y00 ¼ y0 � yc; where yc denotes

the vorticity centroid of the vortex concerned relative to the system vorticity centroid motion, it
can be shown thatI

oy0
1y

0
2 dA ¼

I
oy00

1y002 dA þ yc1

I
oy002 dA þ yc2

I
oy00

1 dA þ yc1yc2

I
o dA ð9aÞ

and

1

2

I
oðy022 � y021 Þ dA ¼

1

2

I
oðy2 � y1Þ dA þ

X2
i¼1

ð�1Þiyci

I
oy00

i dA þ
y2c2 � y2c1

2

I
o dA; ð9bÞ

where the integrals are taken over the core of the vortex concerned. Since
H
oy00

i dA � 0; it follows
that there are two main mechanisms through which vortex sound is generated. The first one is the
dynamics of the vorticity centroid of each vortex (terms containing yci) and the second is related to
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the unsteady motion of the core fluid relative to this centroid (terms containing y00
i ). It has been

shown by Tang and Ko [18] that the latter is strongly associated with the core deformation.
Eqs. (8) and (9) generalize the results of Tang and Ko [18] to different two-dimensional vortex
systems.
In Tang and Ko [18], one can define the impulse centre of an individual vortex, yic

0, as

y0
ic1 ¼

I
oy0

2y
0
1 dA=

I
oy02 dA and y0

ic2 ¼
I

oy02y
0
1 dA=

I
oy0

1 dA;

so that I
oy001y00

2 dA ¼ y0c2

I
o dAðy0

ic1 � y0c1Þ or y0c1

I
o dAðy0

ic2 � y0c2Þ: ð10Þ

Eq. (10) suggests that the sound generated by vortex core deformation can be estimated using the
impulse centre and the vorticity centroid of the vortex core.

2.2.2. Vortex rings
The vortex rings are axisymmetrical structures, thus forming a compact vortex system. The

system can be described using the cylindrical co-ordinates (z; r; y) as shown in Fig. 2. f ðyÞ here
equals #y=r; where #y is an unit vector in the azimuthal direction. One obtains

pðx; tÞ ¼
r0

4c2jxj
ðcos2 y� 1=3Þ

q3

qt3

I
or2z dA; ð11Þ

where the integral is taken over by a cross-section of the vortex system [15]. The time derivative is
evaluated at the retarded time t ¼ t� jxj=c: A quadrupole sound field is created. The source term
is Sr ¼

H
or2z dA: Suppose the vortex ring system vorticity centroid zsc; which is defined in the

same way as ysc (Eq. (6)), is moving in the longitudinal direction z with an unsteady speed, then
Sr ¼

H
or2z dA ¼

H
or2ðz0 þ zscÞ dA; where z0 represents a longitudinal distance relative to zsc:

Owing to the conversation of vortex impulse, the quadrupole source strength is

q3Sr

qt3
¼

q3

qt3

I
or2z0 dA þ

I
or2 dA

q3zsc

qt3
: ð12Þ

Far Field Observer point x

z

Origin

e (π/2)^

e (π)^

y

θ

Vortex ring system

r

Fig. 2. Schematic diagram for vortex ring system.
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Concerning the farfield contribution of an individual vortex ring, one can define the vorticity
centroid of one of the vortex ring (z0c; rc) as

rc ¼
I

or dA=

I
o dA and z0c ¼

I
oz0 dA=

I
o dA; ð13Þ

where the integrals are taken over the core of the vortex ring concerned. It follows that the farfield
pressure contribution from one vortex ring is

q3Sr

qt3
¼

q3

qt3

I
or002z00 dA þ 2rc

I
or00 dA þ z0c

I
or002 dA

� �

þ
I

o dA
q3

qt3
r2cz0c þ

I
or2 dA

q3zsc

qt3
; ð14Þ

where 00 denotes quantity relative to the vorticity centroid. The last two terms on the right-hand
side of Eq. (14) represents sound generation by vortex centroid dynamics, while the other three are
the contributions from fluid motions relative to the centroid. The latter relates to core
deformation. This is consistent with the deduction from Eq. (9) for the case of two-dimensional
vortex system.
One can also define the impulse centre of an individual vortex ring, (z0ic; ric), according to Lamb

[24]:

ric ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiI
or2 dA=

I
o dA

s
and z0ic ¼

I
or2z0 dA=

I
or2 dA; ð15Þ

which can be computed by contour integrals. It follows that

q3

qt3

I
or002z00 dA þ 2rc

I
or00 dA þ z0c

I
or002 dA

� �
¼

q3

qt3

I
o dAðr2icz

0
ic � r2cz0cÞ: ð16Þ

Eq. (16) is an analogue of Eq. (10) for an vortex ring system. Eqs. (14) and (16) further
generalize the deductions of Tang and Ko [18] to the axisymmetrical vortex system. The theory
shows the importance of the offset between impulse centre and vorticity centroid, which is due to
the distortion of vortex ring core from its steadily propagation shape [25], in the sound generation
process.

2.2.3. Similarities in sound generation mechanisms
Though the two-dimensional vortices and the vortex rings are different in nature, one can

observe from the derivations in the previous two sections that the sources of sound during their
interactions are similar. For the two-dimensional vortices and vortex pairs, Eq. (9) suggests that
the unsteady dynamics of the vorticity centroids and the motions of the core fluids relative to the
vorticity centroids are the two basic mechanisms for sound generation. The latter is shown to
relate to the spatial location differences between impulse centres and the vorticity centroids, which
vanish or are constants in the case of steady vortex motions (Eq. (10)). Therefore, the second
mechanism can be regarded as the unsteady core deformation.
For vortex rings, Eq. (14) shows explicitly the importance of vorticity centroid dynamics and

the unsteady motions of core fluids relative to the vorticity centroids in the production of sound.
The source terms related to the latter mechanism can be grouped into one single term concerning
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impulse centres and vorticity centroids (Eq. (16)). The difference (r2icz
0
ic � r2cz0c) is time-invariant for

a steady propagating vortex ring. Thus, this difference represents the effects of core deformation
(deviation for steady propagating state) in the production sound. Therefore, it can be concluded
that, whether the system is two-dimensional or ring-type (axisymmetrical), the sound produced is
due to two mechanisms. The first one is the unsteady vorticity centroid dynamics and the other the
unsteady deformation of vortex cores. It will be shown later that the sound produced by these
mechanisms possess similar features, regardless of the interaction systems.
Though the expressions of the sound source terms for the two-dimensional and axisymmetric

vortex systems look different, their physical meanings are almost the same. The source terms due
to vorticity centroid dynamics are yc1yc2

H
o dA and r2cz0c

H
o dA for the two-dimensional and

axisymmetric systems, respectively. The latter involves the impulse of the vortex ring in the axial
direction (r2c

H
o dA), while the former the impulse of the two-dimensional vortex and vortex pair

in the longitudinal direction (yc2

H
o dA). Thus, the time derivatives of these terms are related to

the rates of change of the internal forces magnitudes, their work done and the axial/longitudinal
jerking motions of the vortices. Concerning the source terms due to the core deformation, the
term ðy0ic1 � y0

c1Þy
0
c2

H
o dA in the two-dimensional system (Eq. (10)) represents the unbalance of

the longitudinal vortex impulse at the vorticity centroid. The interpretation of the corresponding
term in the axisymmetric system, ðr2icz

0
ic � r2cz0cÞ

H
o dA; is not that straightforward. However, it

does represent the extra vortex ring impulse due to an offset between the impulse centre and the
vorticity centroid. Similar to the term ðy0ic1 � y0

c1Þy
0
c2

H
o dA; it depends on the deformation of

vortex core from its equilibrium shape. Thus, sound generation mechanisms described by these
two terms are similar, though the forms look different.
The following sections illustrate the generality of the above-derived sound generation

mechanisms in the commonly observed major vortex interactions in plane and axisymmetric
shear flows. They are leapfrogging, coalescence and collision. The effects of mean flows are
ignored for simplicity.

3. Numerical results and discussions

This section is to illustrate the similarities of the sound generation mechanisms in the
interactions of two-dimensional vortices, vortex pairs and vortex rings. For the two-dimensional
vortices, the initial cores are assumed to be circular, while those for the vortex pairs and vortex
rings follow the steadily translating solutions given by Pierrehumbert [26] and Norburg [25],
respectively. In order to give a detailed analysis on the basic mechanisms of sound generation in
different vortex interaction systems, the strengths of the interacting vortices are set to be different.
In the following sub-sections for the two-dimensional systems, os and ow denote the vorticity
inside the stronger and weaker vortex, respectively. For vortex rings, these parameters denote the
corresponding vorticity at the initial locations of the vorticity centroids.

3.1. Leapfrogging

Leapfrogging interaction between vortices is commonly found in the initial regions of low-
Mach-number mixing layers and is believed to be responsible for the growth of the layers [27].
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In a plane mixing layer, the initial coherent structures can be modelled as two-
dimensional vortices. When the vortices are well separated, their vorticity centroids undergo
leapfrogging motions having nominally circular orbits [13]. For this type of vortex system
motions, the system vorticity centroid is stationary and thus, all the terms on the right-hand side
of Eq. (8) associated with the time differentiation of ysc vanish. In the foregoing discussions, s
denotes the radius of the initial vortex core and is taken to be the same for each interacting
vortex.
Fig. 3 shows typical examples of the time variations of the sound source strength q3S1=qt3 and

the contributions of the core deformation and the macroscopic vorticity centroid dynamics
associated with the two-dimensional vortex leapfrogging motions (ow=os ¼ 0:866). For both
vortices, the unsteady vorticity centroid dynamics produce a relatively low-frequency sound. This
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Fig. 3. Time variations of source strengths during two-dimensional vortex leapfrogging. G=s ¼ 6; ow=os ¼ 0:866: (a)
Stronger vortex and (b) weaker vortex. (—) Contribution from core deformation; (— —) contribution from vortex

centroid dynamics; (— �—) overall contribution from individual vortex.
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frequency is close to the rotational speed of the centroids and is the same for both vortices.
It is observed that the corresponding motion of the weaker vortex produces higher low-
frequency sound magnitude. The source strength related to the core deformation,
q3=qt3

H
oy00

12 dA in Eq. (9a), gives rise to high-frequency sinusoidal oscillations. The stronger
the vortex, the greater the magnitude and frequency of these oscillations. The peaks and troughs
of these oscillations are found at the instant when the rates of vortex core deformation are high
[13]. Similar observations can be made for q3S2=qt3 and thus the corresponding results are not
presented. If one represents the vortex system using polar co-ordinates with the origin set
at the current vortex system centroid, it is straightforward to verify that q3S1=qt3 and q3S2=qt3 for
each vortex are only 90� out-of-phase with each other. This suggests that they come from
the same mechanisms. Therefore, the following discussions in this section will be focussed only on
q3S1=qt3:
It can be also observed from Fig. 3 that the frequencies of the high-frequency oscillations

produced by the stronger and weaker vortices are in the ratio of 1:0.866. This is consistent with
the vorticity ratio ow=os: Such observation indicates that the sound generated by unsteady core
deformation of a particular vortex is related to its own strength, that is, its own circulation. The
higher the circulation, the higher is this frequency.
The difference in these high-frequency oscillation frequencies results in the formation of beats

in the far field (Fig. 4), though the contributions of the vortical elements along the y3 direction,
which arrive at the far field at different time intervals, may to some extent smoothen the farfield
pressure fluctuations. Fig. 4 also indicates that the two sound generation mechanisms of core
deformation and vorticity centroid dynamics are basically independent of each other, as one can
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Fig. 4. Time variations of overall source strengths of two-dimensional vortex leapfrogging. G=s ¼ 6; ow=os ¼ 0:866:
(—) Contribution from core deformation; (— —) contribution from vortex centroid dynamics.
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find large low-frequency sound generation at the instants of high and weak high-frequency sound
production.
The vortex pairs dominate the initial regions of low-Mach-number two-dimensional jets or

rectangular jets with large aspect ratios. In theory, a vortex pair is characterized by a variable a;
which represents the ratio of the equivalent vortex core radius to the separation of the two vortex
centroids in the vortex pair d [26]. Without loss of generality, the two interacting vortex pairs are
taken to have the same d and a initially. Unlike the case for two-dimensional vortex leapfrogging,
the overall source strength q3S2=qt2 vanishes as the contributions from the vorticity patches cancel
each other completely.
Leapfrogging of vortex pairs is observed with G=d ¼ 2:85; a ¼ 0:6 and ow=os ¼ 0:866; where G

is the initial separation between the vortex pairs (not shown here). The system vorticity centroid is
translating with a steady speed along the y1-axis. Thus, all the terms on the right-hand side of
Eq. (8) involving the time differentiation of ysc again vanish or have negligible effects. Again, one
can find that the rectilinear point vortex model [28], which does not take into account any form of
vortex core deformation, can predict the low-frequency pulses which are generated close to the
slip-through instants by the unsteady vorticity centroid dynamics (Fig. 5). The high-frequency
fluctuations are due to the vortex core deformation. As the sound generation mechanisms have
been studied in detail by Tang and Ko [18], except that no comparison with the point vortex
model prediction was given by the two researchers; no further discussion will be given in the
present paper. However, the frequency of the high-frequency fluctuation produced by the stronger
vortex pair is higher than that associated with the weaker pair. The frequency ratio is again 0.866,
the same as the ratio ow=os (Fig. 6). It should be noted that the magnitudes of the spectral
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Fig. 5. Time variations of overall source strengths of vortex pair leapfrogging. G=d ¼ 2:85; ow=os ¼ 0:866; a ¼ 0:6:
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densities illustrated in Fig. 6 only reveal the averaged magnitudes of the frequency peaks as they
vary with the time of flight of the vortex pairs. This is not the case in two-dimensional vortex
leapfrogging (Fig. 3).
In low-Mach-number axisymmetric jets, the coherent structures are the vortex rings.

The unsteadily interacting vortex rings form a compact sound generation system. Without
loss of generality, the initial radii, R; of the interacting vortex rings in the present compu-
tation are taken to be the same. The initially leading vortex ring is set to be the weaker
one. b denotes the ratio of the equivalent core radius to the ring radius in the Norburg’s
system [25].
With the appropriate G=R; the vortex rings having the same sense of core fluid rotation

undergo the well-known leapfrogging motion, also known as the mutual slip-through motion [29].
The interacting vortex ring system is, again, translating with a constant speed, though the
velocities of individual vortex rings are different. The second term on the right-hand side of
Eq. (12), therefore, vanishes. Fig. 7 illustrates a typical example of the time variations of the
source strength fluctuations of G=R ¼ 0:5 and ow=os ¼ 0:866; as calculated using Eqs. (12) and
(16), during a vortex ring leapfrogging. Similar to the case of vortex pair leapfrogging, the
activities of the core fluids relative to the vorticity centroids, which are ascribed to be the result of
unsteady core deformation, produce high-energy high-frequency source strength fluctuations. The
stronger the vortex ring, the larger the magnitude of these fluctuations. The dynamics of the
vorticity centroids generate lower frequency source strength fluctuations, which are of importance
close to the instants of vortex ring slip-through. It has been shown by Tang and Ko [15] that
this strong sound radiation at the slip-through instants is due to the radial acceleration of the
vorticity centroid and will not be discussed further here. Also, smaller magnitude high-
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frequency fluctuations are found on the source strength fluctuations produced by the macroscopic
dynamics of the vorticity centroids due to the core deformation as in the cases of the
two-dimensional vortices and vortex pairs. A comparison between results obtained from the
present contour dynamics computation and the Dyson model is shown in Fig. 8 [30]. This model
assumes circular cores with constant vorticity throughout the interaction and is only able to
predict the slowly varying pulses produced at the slip-through instants. In addition, the high-
frequency source strength fluctuations produced by the stronger vortex ring have a higher
frequency than that associated with the weaker one. The frequency ratio is again 1:0.866 (Fig. 9),
showing that these high-energy sound sources are mainly due to the self-induction within the
cores.
It is interesting to note from Fig. 7 that the magnitudes of the source strengths of the unsteady

core fluid motions relative to individual vorticity centroids vary substantially with time. The
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minima for each vortex ring are observed at instants when the ring radius is the smallest, while the
maxima occur at instants of greatest ring radius. This is not observed in the vortex pair
leapfrogging case, where the magnitudes of the high-frequency source strength fluctuations are
nearly time-invariants. One should note that the vortex ring core size changes during the
interaction, though the circulation of each vortex ring remains unchanged. According to the
vortex sound theory (Eq. (14)) and the previous results of the authors [15], the production of
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sound is highly related to the impulse of each vortex ring, which is proportional to Gr2ic: As a
vortex ring squeezes through another vortex ring, its impulse decreases with the square of its
radius, resulting in weaker sound generation. Also, the vorticity at a point inside a vortex ring of
the Norbury’s family is proportional to the radial position of the point concerned [25]. One can,
therefore, expect from Eq. (16) that a decrease of the mean vortex ring radius leads to weaker
high-frequency source strength production. This is not the case for the vortex pairs or the
two-dimensional vortices, where the size of and the vorticity inside each vortex are
time-invariants.
It can be concluded that there are two independent sound sources in the leapfrogging vortex

interactions, regardless of the type of vortex system. The macroscopic vorticity centroid motions
produce a low-frequency sound, while the unsteady core deformation results in higher frequency
farfield pressure fluctuations. The latter is directly related to self-induction.

3.2. Collisions

Collision interaction occurs when two vortices of opposite circulation come close to each other.
Some examples of this interaction can be found in the wakes of cylinder flows [31] and in coaxial
jets [32]. Since collision does not occur in a single plane mixing layer, only vortex pairs and vortex
rings will be considered in this sub-section. Vortex coalescence during collision involves
substantial vortex stretching, which cannot be modelled by the contour dynamics model. Thus, it
is excluded in the present study.
During a head-on collision of two vortex pairs having the same strength but with opposite

sense of vortex core fluid rotation, the two vortex pairs originally moving towards each other in
the y1 direction eventually move away from each other in the y2 direction (not shown here).
All vortex core boundaries remain well separated and the system vorticity centroid is
stationary. Again, the time fluctuation of the source strength q3=qt3

H
oy00

12 dA resulted from
core deformation is sinusoidal. Fig. 10 shows a typical example of the phenomenon with G=d ¼ 4;
a ¼ 0:5 and 9ow=os9 ¼ 1: Though the vorticity centroid dynamics produce sound of much lower
frequency, the sound does contain some small magnitude high-frequency fluctuations, which are
180� out-of-phase with those produced by core deformation. Fig. 11 compares the sound
produced by the corresponding vorticity centroid dynamics with that predicted by the rectilinear
point vortex model [28]. It is clearly illustrated that the small magnitude source strength
fluctuations produced by the vorticity centroid dynamics are due to the effects of core
deformation. The vortex core deformation gives rise to significantly high-frequency vorticity
centroid jerking motions, creating the above-mentioned small magnitude source strength
fluctuations (not shown here).
When the colliding vortex pairs possess different strengths, the colliding system vorticity

centroid moves with an unsteady velocity parallel to the axes of the vortex pairs. The sound source
strength is, according to Eq. (8a),

q3S1

qt3
¼

q3

qt3

I
oy01y

0
2 dA þ

I
oy0

2 dA
q3ysc1

qt3
:

The unsteady jerking motion of the system vorticity centroid produces additional sound.
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A typical example of the unequal vortex pair collision is illustrated in Fig. 12 (G=d ¼ 4; a ¼ 0:5
and 9ow=os9 ¼ 0:866). The cores of the vortex pairs are moving under the close influence of each
other after the first collision at y1=dE1: The vortex cores on the positive y2-plane move like a
vortex dipole. The second collision takes place at y1=dE� 25; but in the transverse direction. The
vortex pairs eventually move in the opposite directions. This kind of double collision is not
observed in the case of vortex ring collision studied by Tang and Ko [16]. This is due to the weak
self-induced velocity field within each vortex pair.
Again, the time variations of source strengths contain a low-frequency component and a much

higher frequency component, while the effect of ysc1 is very small (Fig. 13). The low-frequency

2y1/d

-35 -30 -25 -20 -15 -10 -5 0 5

2 y
2/

d

0

2

4

6

8

10

12

14

16

ωst = 0

ωst = 400

ωst = 800

ωst = 1200

ωst = 1600 ωst = 2000 ωst = 0

ωst = 400

ωst = 800

ωst = 1200

ωst = 1600
ωst = 2000

Fig. 12. Vortex dynamics during collision between unequal vortex pairs. G=d ¼ 4; 9ow=os9 ¼ 0:866; a ¼ 0:5: (—)

Vortex cores; (— �—) trajectory of stronger vortex vorticity centroid; (— � �—) trajectory of weaker vortex vorticity

centroid. Arrow denotes direction of motion.

Retarded Time ωst

0 500 1000 1500 2000

S
ou

rc
e 

S
tr

en
gt

h 
F

lu
ct

ua
tio

n 
(1

0-7
)

-15

-10

-5

0

5

10

15

Fig. 13. Overall sound source strength fluctuations of unequal vortex pair collision. G=d ¼ 4; 9ow=os9 ¼ 0:866; a ¼
0:5: (—) Rectilinear model prediction [28]; (— �—) overall source strength of the system; (— —) effect of unsteady

system vorticity centroid motion.

S.K. Tang, N.W.M. Ko / Journal of Sound and Vibration 262 (2003) 87–115 103



component is important at the instant close to each collision, during which there is an
approximately 90� change in the core motion direction. Beats are found on the overall source
strength time fluctuations (Fig. 13). Again, the rectilinear vortex model [28] only predicts the low-
frequency source strength time variation but not the small magnitude high-frequency fluctuations,
which are due to the effect of core deformation. Similar to the cases of the two-dimensional vortex
interaction and of the vortex pair leapfrogging discussed earlier, for collision the frequency of the
high-frequency fluctuations produced by the weaker vortex pair is about 0.866 times that of the
stronger vortex pair (Fig. 14).
Two vortex rings initially moving towards each other undergo a collision interaction, as

investigated by Tang and Ko [16] numerically and by Kambe and Minota [33] both theoretically
and experimentally. In general, their results on the time variations of farfield pressure fluctuations
are consistent with each other. In addition, Tang and Ko [16] have pointed out the importance of
vortex ring jerks and accelerations in the production of sound by the vortex ring collision process.
Without loss of generality, the initial radii of the colliding vortex rings in the present investigation
are taken to be the same.
During a head-on collision of two vortex rings, the vortex ring cores are close to each other

at increased flight time, due to the strong self-induced forward going velocities. The second term
on the right-hand side of Eq. (12) vanishes as zsc=R � 0: An example of the sound source
variations with G=R ¼ 4; b ¼ 0:2 and 9ow=os9 ¼ 1 is given in Fig. 15. The core deformation
again results in the generation of higher frequency source strength fluctuations. The magnitude of
this sinusoidal fluctuations increases as the cores get closer to each other. The degree
of core deformation also becomes more serious. The dynamics of the vorticity centroids are
affected by the core deformation so that small magnitude high-frequency source
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strength fluctuations are observed on the relatively low-frequency source strength time variation.
The Dyson circular core model [30] predicts the low frequency source strength fluctuations
only for osto51; when the vortex ring cores are slightly deformed from their steadily translating
shapes. Once the vortex cores are severely deformed, the Dyson model [30] can no longer predict
the motions of the vortex rings and the sound production. This is consistent with the observation
of Shariff et al. [34].
For unequal vortex ring collision, the two colliding vortex rings basically maintain its

original longitudinal direction of motion, even when the vortex cores are close to each
other due to strong self-induction fields [16]. Fig. 16 illustrates the sound source strengths
obtained from a vortex ring collision with G=R ¼ 4; b ¼ 0:2 and 9ow=os9 ¼ 0:333: The high-
frequency source strength fluctuations are the results of unsteady core deformations, though the
amplitudes of those produced by the weaker vortex ring are small. However, it should be noted
that while the significantly high-frequency source strength fluctuations are produced by the
stronger vortex ring, the large negative pulse generated close to the slip-through instant
(ost ¼ 105:2) is due to the dynamics of the weaker vortex ring vorticity centroid. The high radial
acceleration of the vortex ring has been found to be the major sound production mechanism
during this short period of time [16]. The predictions of the Dyson model [30] are basically the
same as those illustrated in Fig. 16, without the high-frequency components and thus are not
presented.
In this section, it is again found that the sound produced by core deformation, be it of two-

dimensional vortices and vortex rings, during vortex collision is of high frequency, while that due
to the unsteady vorticity centroid dynamics varies slowly with time. The two sound sources are
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independent of each other. Similar to the case for vortex leapfrogging, the high-frequency sound is
produced by self-induction.

3.3. Coalescence

Vortex coalescence is the last stage of vortex pairing during which two vortical structures merge
into a single structure [27,29]. This interaction is usually found in plane and axisymmetric mixing
layers. In theory, the cores of the inviscid vortices cannot come into mutual contact. Thus,
coalescence in this presentation is defined as the mutual folding together of the cores of the
interacting vortices [35]. Serious core deformation occurs.

Retarded Time ωst

0 50 100 150 200 250 300

S
ou

rc
e 

S
tr

en
gt

h 
F

lu
ct

ua
tio

ns
 (

10
-5

)

-2

-1

0

1

2

3

4

Retarded Time ωst

0 50 100 150 200 250 300

S
ou

rc
e 

S
tr

en
gt

h 
F

lu
ct

ua
tio

ns
 (

10
-5

)

-10

-8

-6

-4

-2

0

2

4

(a)

(b)

Fig. 16. Time variations of source strengths of unequal vortex ring collision. G=R ¼ 4; 9ow=os9 ¼ 1=3; b ¼ 0:2: (a)
Stronger vortex ring and (b) weaker vortex ring. (—) Direct contribution from core deformation; (— �—) overall

contribution from individual vortex ring.

S.K. Tang, N.W.M. Ko / Journal of Sound and Vibration 262 (2003) 87–115106



The discussions will be focused on the terms q3S1=qt3 and q3Sr=qt3 for the two-dimensional
systems and the axisymmetric system, respectively, since q3S2=qt3 is 90� out-of-phase with the
q3S1=qt3 in the two-dimensional vortex interaction and vanishes in vortex pair interaction.
Fig. 17a shows the typical time fluctuations of the source strengths due to the unsteady vorticity
centroid dynamics during the two-dimensional vortex coalescence. The contribution from each
vortex is approximately in-phase. Similar phenomenon is observed for the source strengths due to
the core deformation (Fig. 17b). However, it can also be noticed that the total contributions from
each of the two above-mentioned source mechanisms counteract each other, resulting in the

Fig. 17. Sound source strength fluctuations of two-dimensional vortex coalescence. G=s ¼ 2:5; ow=os ¼ 0:866: (a)
Contributions from vorticity centroid dynamics. (—) Total contribution from vorticity centroid dynamics; (— �—)

stronger vortex; (— —) weaker vortex. (b) Contributions from unsteady core deformation. (yy) Overall source

strength; (— � �—): total contribution from vorticity centroid dynamics; (—) total contribution from unsteady core

deformation; (— �—) contribution from core deformation of stronger vortex; (— —) contribution from core

deformation of weaker vortex.
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radiation of a low-frequency sound. As shown by the spectra of the source strengths (Fig. 18), the
low-frequency sound comes from the unsteady core deformation of the weaker vortex.
Similar relationships between different source terms are observed during the coalescence of

vortex pairs (Fig. 19). Since the core shapes and the time variations of the source terms resemble
those of the two-dimensional vortex case. The results are not discussed here.
The source terms due to the vorticity centroid dynamics from the two interacting vortex rings

are approximately out-of-phase with each other (Fig. 20a). The difference in their strengths results
in the radiation of higher frequency sound. The peaks in the figure occur at the instants when the
two vorticity centroids are co-planner, and are associated with the ring of larger radius (not shown
here). This is similar to the results of the vortex ring leapfrogging cases (for instance, Fig. 7),
though the core deformation in the coalescence is much more serious. This further confirms the
vorticity centroid dynamic is one of the basic mechanisms for sound generation in vortex ring
interaction.
Fig. 20b illustrates that the source terms due to the unsteady core deformation in coalescence

are of a frequency close to that of the overall source term due to the vorticity centroid dynamic.
However, one can find that the vorticity centroid dynamic is the dominant sound generation
mechanism during the vortex ring coalescence. Unlike the case of vortex pairs and two-
dimensional vortices, both the strong and weak vortex rings are important in the overall
production of sound (Fig. 21a), with the contribution of the latter slightly higher than that of the
former (Fig. 21b).
In this section, examples of sound generation by the coalescence of vortex pairs, two-

dimensional vortices and vortex rings are given. Similar results can be obtained with other
combinations of vortex separations, circulation ratios, etc. as far as the type of interaction is
unchanged. Results indicate again that the unsteady vorticity centroid dynamics and the core
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deformation remain the two basic mechanisms for sound generation. The former is more
important in vortex ring interaction, while the latter dominates the sound generation for the two
two-dimensional systems.

4. Conclusions

In the present study, the sound generation mechanisms during the interactions of two vortices
at low Mach number are investigated theoretically and numerically. The method of contour
dynamics is used for the computation of the motions of the vortex boundaries, while the sound
source strengths are calculated based on the vortex sound theory. The vortex systems concerned
are the two-dimensional vortices, vortex pairs and vortex rings. Leapfrogging, collision and
coalescence interactions are investigated.
For all the vortex systems with small core deformations, it is found that the core deformation

produces high-frequency source strength fluctuations. The vorticity centroid dynamics generate
relatively low-frequency source strength fluctuations. However, owing to the effect of the core
deformation on the vorticity centroid dynamics, there are high-frequency components embedded
in these low-frequency fluctuations. The frequency of the high-frequency source strength
fluctuations produced by a vortex or a vortex ring is proportional to the strength of the vortex/
vortex ring concerned. Since the high-frequency farfield pressure fluctuations increase the sound
power radiated significantly, the sound effectively produced by the vortex core deformation,
therefore, heavily depends on the circulation of each interacting vortex.
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When the core deformation becomes serious, the unsteady core deformation dominates the
sound generation for the two-dimensional vortex and vortex pair interactions, while the unsteady
vorticity centroid dynamics are more important for the vortex ring interactions. The weaker
vortical structure during coalescence is found to be more important in the sound generation
process.
The results of the present study are summarized in Table 1. They show clearly that the sound

produced by simple vortex interactions at low Mach number, independent of the system being
two-dimensional or axisymmetrical, moving with steady or unsteady speed and the degree of core
deformation, is generated by two basic mechanisms. The first one is the macroscopic vorticity
centroid dynamics and the second one the microscopic vortex core fluid motions relative to the
vorticity centroid. The latter is related to the deformation of the vortex core from its equilibrium

Fig. 20. Sound source strength fluctuations of vortex ring coalescence. G=R ¼ 0:5; ow=os ¼ 0:866; b ¼ 0:2: (a)

Contributions from vorticity centroid dynamics and (b) contributions from unsteady core deformation. Legends: same

as those in Fig. 17.
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shape and is of higher frequency than that produced by the former mechanism. The present
results have, therefore, generalized and further substantiated the previous findings of the authors.
Also, they summarize the similarities and differences between the sound generation processes
of two-dimensional and axisymmetric vortex systems, which are not presented in existing
literature.
However, one should bear in mind that the interactions considered here are simple ones, which

may not be representing exactly those that take place inside a real turbulent shear layer. The scales
associated with core deformation and centroid movement are also unclear in real scenario. A
further study using direct numerical simulation appears to be useful in the topic, especially when
the present idea is extended to the aeroacoustics of low-Mach-number turbulent shear flows.
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Appendix A. Two-dimensional vortex sound field

The result of M .ohring [11] suggests that the farfield pressure fluctuations due to two-
dimensional unsteady vortex motions can be found using the formula

pðx; tÞ ¼
r
4pc

q3

qt3

Z t�jxj=c

�N

I
ð #x � yÞy � ðo� #xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2ðt� t0Þ2 � jxj2
q dy1 dy2 dt0; ðA:1Þ

where the product ð #x � yÞy � ðo� #xÞ is evaluated at time t0 and use has been made of jxjbjyj: The
wavelength of the sound generated is assumed to be much larger than the vortex core dimension.
With loss of generality, let x ¼ x1 #y1 þ x2 #y2 and y ¼ y1 #y1 þ y2 #y2: One finds,I

ð #x � yÞy � ðo� #xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðt� t0Þ2 � xj j2

q dy1 dy2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2ðt� t0Þ2 � jxj2
q
� cos 2y

I
oy1y2 dA þ sin 2y

I
y22 � y21

2
o dA

� �
: ðA:2Þ

The time integration involved in Eq. (A.1) can be transformed into a line integration in the y3
direction from �N to +N by observing that t0 ¼ t� jx � y3 #y3j=c as mentioned in [13] and
derived in Ffowcs Williams and Hawkings [36]. Some details on this transformation can also be
found in Tang and Ffowcs Williams [37]. Eq. (A.1) becomes

pðx; tÞ ¼
r0
8pc2

Z
N

�N

1

jx � y3 #y3j
q3

qt3
cos 2y

I
oy1y2 dA þ sin 2y

I
y22 � y21

2
o dA

� �
dy3: ðA:3Þ

where the differentiation is done at the retarded time t� jx � y3 #y3j=c: Since jxjbjyj; Eq. (A.3) can
be approximated by Eq. (4) if one includes y3 into y: Though the sound radiated out from various
parts along the y3 direction of the two-dimensional source arrives at x at different time, the source
strengths can still be described by q3=qt3

H
oy1y2 dA and q3=qt3

H
ðy22 � y21=2Þo dA: A Fourier

transform of Eq. (A.3) with respect to t; after transforming the integral along y3 back into a time
integral, gives the formula used by Knio et al. [9] when jkxj-N; where k is the wave number of
the sound generated. One can also observe that the source term in the formula of Knio et al. [9] is
the Fourier Transformed form of the present source terms in Eq. (A.3).
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